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Separation theorems

Suppose we start at a point £ in the interior of a located subset C' of a normed
space X and move linearly towards a point z in the metric complement of C.
Are we able to tell when we are crossing the boundary

oC =CnNn~C
of C7?

In general, the constructive answer is no. However, our geometric intuition
suggests that when C' is convex, we might succeed in pinpointing boundary

crossing points.



Proposition: Let C be an open convex subset of a Banach space X such that

C U —C isdensein X, and let £ € C. For each z € —C and each t € [0, 1]
write

ze=tE+ (1 —1t)z.
Then

(i) v(&,2) =inf{t € [0,1] : 2; € C'} exists, and 0 < (£, 2) < 1;
i) z is the unique intersection of the segment (&, z| with 0C)
V(&)
(iii) if v(&,2) <t <1, then z € C; and

(iv) if0< t <~(&,2), then zz € —C.



Moreover, the mapping (&, z) ~ 2+ (¢,2) of € x —C into 0C' is continuous
at each point of C x —C.

For fixed & € C, we call the mapping z ~~ Zr(£,2) in the foregoing proposition
the boundary crossing map of C' relative to &.



A subset C of a vector space X over K is called a cone if for all z,y € C' and
all t > 0, both = 4+ y and tx belong to C.

In that case, C' is convex.

The closure of a cone is a cone, as is the intersection of two cones.



If K is a convex subset of X, then the set
c(K)={tx:x € K,t >0}

is a cone, the cone generated by the convex set K.
If X is a normed space and K is open, then so is ¢(K).

If K is a bounded, located, convex subset of X such that p(0, K) > 0, then
c(K) is located.



A linear subset H of a normed space X is called a hyperplane if there exist
an associated vector xg € X and a positive number ¢ such that

> ||z — xg|| = ¢ for each x € H, and

> each x € X is represented (uniquely) in the form z = txg+y with t € K
and y € H.

The kernel, ker(u) = u~1(0), of a nonzero bounded linear functional on X
Is a hyperplane.

Proposition: Let X be a normed space, and H a hyperplane in X
with associated vector xq. Then there exists a unique bounded linear
functional u on X such that keru = H and u(xzg) = 1.



A half space of a normed space X is a convex subset K such that 0K is a

hyperplane and the set

{reX:z2e KV—z€ K}

Is dense in X.

We are now ready for the basic separation theorem:

Let X be a separable normed space, Ko a bounded, located, open,
convex subset of X such that p(0, Kg) > 0, and xq a point of X
such that —xq € K. Then there exists an open half-space K of X
such that Ko C K, p(xg, K) > 0, and OK is a located subspace of
X that is a hyperplane with associated vector x.



The proof illustrates an important observation about classical proofs using
Zorn's lemma): for separable spaces it is often possible to replace such a proof
by a constructive one that uses an induction argument.

The basic idea of the constructive proof is this. Given a dense sequence

(Tn),>1 in X, carry out a succession of located convex enlargements of Ky
such that forn > 1,

> the cone generated by the nth enlargement K, is close to at least one of
the points xy, and —xy, and

> the union of the cones c¢(Ky,) is the desired open half-space.

The idea may seem simple, but the details are very complicated.



The full separation theorem:

Let A and B be bounded convex subsets of a separable normed space
X such that the algebraic difference

{y—xz:2€X,ye B}
Is located and the mutual distance
d=inf{lly—z||:x € A,y € B}

is positive. Then for each € > 0 there exists a normed linear functional
u on X, with norm 1, such that

Reu(y) > Reu(x) +d — ¢
forall x € A and y € B.



Corollary: Let x be an element of a nontrivial separable normed
space X, and let € > 0. Then there exists a normed linear functional

w on X such that ||ul| =1 and u(x) > ||z|| — €.

Proof: If z # 0, apply the separation theorem with A = {0} and B = {«}.

In the general case, choose a nonzero vector y such that ||z — y|| < £/2,
and construct a normed linear functional w on X such that ||ul| = 1 and

u(y) > |ly|l — /2. Then

u(@) > uly) - lu(z) — u(y)| > llyll = = llz =yl > [l - e.



The previous proposition is used in the proof of the Hahn—Banach theorem:

Let v be a nonzero bounded linear functional on a linear subset Y of
a separable normed linear space X such that kerv is located in X.
Then for each € > 0 there exists a normed linear functional u on X

such that ||u|| < ||v]| + € and u(y) = v(y) for each y € Y.

In the constructive context we deal only with the extension of linear functionals
on subspaces of a separable normed space. The standard classical proofs ex-
tending the theorem to nonseparable normed spaces depend on Zorn's lemma

and are therefore nonconstructive.



In RUSS there is an example where it is impossible to obtain an extended

linear function w such that ||u|| = [|v]].

Ishihara has shown that such an extension can be found when the norm function

on X is Gateaux differentiable.



The Hahn—Banach theorem has some surprising applications, like the following

(whose classical proof is almost trivial).

Proposition: Let x1,...,xn be elements of an infinite-dimensional
normed space X, and let € > 0. Then there exist linearly independent
elements e, ...,en of X such that ||z — ey|| < e for each k.

Proof: First construct a finite-dimensional subspace V' of span{x1,...,zn}
such that for each ¢ there exists y; € V with ||x; — y;|| < €/2. Embed V in
an n-dimensional subspace W of X.

WLOG y1 # 0. Set e1 = y;.



Suppose we have found eq,...,er in W such that ||ly; — ¢;|| < /2 for 1 <
i < k<n. Let Vi, =span{eq,...,eL}.

Construct a normed linear functional w on W such that u (V) = {0} and
lull = 1.

Pick z € W such that ||z|| = ¢/2 and u(z) > ¢/3.

If u (yp11) # 0, then p (yg11, Vi) > 0 and we set ep 11 = ypo1.

If u (yp41) < €/3, then u(yp41 — 2) # 0, p (Ypy1 — 2, Vi) > 0, and we set
€k+1 = Yk+1 — %



Locally Convex Spaces

A locally convex space consists of a linear space X over K, a family (p;);cr
of seminorms on X, and the equality and compatible inequality defined by

r=y <= Vicr(pi(x—y)=0),
r#y <= Jicr(pi(z—y)>0).

The corresponding locally convex topology on X is the family 7x of all
subsets of X that are unions of sets of the form

U(a, F,e) = {x €EX:) pi(z—a)< E}
1€ F
where a € X, F'is an inhabited finitely enumerable subset of I, and € > 0.



With natural modifications, we can extend notions from normed to locally
convex spaces.

For example, a subset S of the locally convex space (X, (pi)z'el> Is said to be
located (in X) if

inf{Zpi(ac—y):yES}

1€F

exists for each x € X and each finitely enumerable subset F' of I.



Consider the linear space B(X,Y') of all bounded linear mappings between the
locally convex spaces X and Y.

This set becomes a locally convex space when endowed with the seminorms

pr defined by

pe(T)=||Tz|| (xe€ X, TeB(X,Y)).

We denote the unit ball of B(X,Y) by B1 (X,Y) or just Bi. When X =Y,
we usually write B(X') and B1(X) rather than B(X,Y) and B1(X,Y).



In the special case where Y is the ground field K, we obtain the space of all
bounded linear functionals on X; this space is called the dual of X, and is
denoted by X™; its unit ball is denoted by X7. The topology associated with
the family of seminorms (pz),.cx on X™ is called the weak™ topology on
X*.

When we are dealing with, for example, total boundedness relative to the locally
convex structure on X™*, we speak of weak™-total boundedness.



Banach—Alaoglu theorem: If X is a separable normed space, then
X7 is weak*-complete and weak*-totally bounded.

It is straightforward to prove the weak™-completeness of X7

Weak™-total boundedness of Xik Is a lot trickier to establish: we sketch the

Ideas.



Let FF = {x1,...,xm} be a finitely enumerable subset of X, let
M > 4 4+ max{||z;|| : 1 < i< m},

and let 0 < e < 1.

Construct a finite-dimensional subspace X of X such that for 1 < ¢ < m,
p (z;, Xg) < &/m and therefore there exists y; € Xg with ||z; — y;|| < e/m.

If Xg = {0}, then life is easy. So we assume that X has positive dimension.
Then every element of X is normed, and X, taken with the operator norm,
is a finite-dimensional Banach space. Hence its unit ball is compact relative to
the operator norm.

Each nonzero element of X has its kernel located in Xg; since X is locally
compact, this kernel is locally compact and hence is located in the space X.
It follows that the Hahn—Banach theorem can be applied to extend nonzero
bounded linear functionals from X to X.



Let {u(l),,u,%} be an £/m-approximation to the unit ball of X in the

operator norm, such that 0 < ||u2” < 1 for each k.

Use the Hahn—Banach theorem to construct normed linear functionals uq, ..., un
in X7 such that ug(z) = ug(ac) for each x € X and each k.

Given u € X7, we can find k such that ‘u(ac) — ug(w)} < e/mforallz € X
with ||z|| < 1. Then

m

> (@) — ug(w;)] < Me.
1=1

Thus {uq,...,un} is an Me-approximation to X7 relative to F.



This technique of cutting down to a finite-dimensional subspace and then ap-
plying the Hahn-Banach theorem is fundamental in the constructive theory of
duality.

Let X be a normed space. For a fixed vector x € X, the linear functional
u ~ u(x) on X™* is weak*-uniformly continuous on X7.

Any element of X™** (the dual of X™*) that is uniformly continuous on X7 can
be approximated arbitrarily closely by functionals of this special form.

Proposition: Let X be a separable normed space, and ¢ a linear
function on X™* that is weak™-uniformly continuous on the unit ball
X7. Then for each e > 0 there exists x € X such that ||z| < 3 |/¢||
and

p(u) —u(z)| <e (uve Xi).



If X is complete, then this approximation can be made exact.

Theorem: Let X be a separable Banach space, and ¢ a linear func-
tional on X* that is weak™-uniformly continuous on X{. Then there
exists x € X such that ¢(u) = u(xz) for each u € X*.



Proof: We may assume that ||¢|| < 1. Recursively applying the preceding
proposition, construct a sequence (xn),,»1 of vectors in X such that for each

n,

d(u) — Y u(zy)

1

<— (u€Xy)
2n

k=1

| n

and [|zn|| < 3/27L.

@)
The series Y xp then converges to an element x of the complete space X.
n=1

Using the linearity and continuity of u, and letting n — oo in (?7), we obtain

the desired conclusion.



Let H be a nontrivial Hilbert space. One of the topologies on B(H) that is
important in operator-algebra theory is the weak-operator topology 7, the
locally convex topology defined by the seminorms of the form T" ~~ |(Tx, y)]

with z,y in H.

Classically, the sets of the type

{T € B(H) : i (Tei, e)| < 5},

1,J=1
with 8 > 0 and {eq,...,en} a set of pairwise orthogonal unit vectors in H,
form a base of weak-operator neighbourhoods of 0 in B(H).

This is not the case constructively. However, it is constructively provable that
the sets of the stated type form a base of weak-operator neighbourhoods of 0
in the unit ball B1(H ).



Proposition:  The unit ball B1(H) of B(H) is T-totally bounded.

Proof: Let {e1,...,en} be a finite set of pairwise orthogonal unit vectors
generating a finite-dimensional subspace Hg of H. It will suffice to prove that
B1(H) is totally bounded with respect to the seminorm

pjk:Tw i ‘<Tej,ek>‘.
i, k=1

Let P be the projection of H on Hy. Then B(Hy) is a finite-dimensional Ba-
nach space, and hence has a totally bounded unit ball, relative to the operator
norm. Let {Tf, . ,T%} be an e/n2-approximation to B1(Hp), and consider
any 1" € Bl(H).



The restriction (PT")g of PT to Hg belongs to By(Hp), so there exists ¢ such
that (PT)o — 7P| < &/n?. Also, TOP € By(H). Thus if 1 < j,k < m,
then

(7= T2P) ejen)| = |((T = TP) ejp Pex)| = [(P (T = TP) ejpew)]

= [(((PTYo = TO) e, ex)| < [[(PTYo = 79 < 55
Hence j,kfil ‘<(T — TiOP) e;, ek>‘ < €. We now see that {T10P ..... TT%P}

is an e-approximation to B1(H) relative to the seminorm Pjk.



Classically, a linear functional ¢ on B(H) is Tq-continuous if and only if it has
the following special continuity property.

SC: There exist 6 > 0 and a set {eq, ..., en} of pairwise orthogonal
n
unit vectors in H such that foreach’T € B(H), if > ‘<Te7;, ej>‘ <
1,J=1

d, then |p(T)| < 1.

Constructively, techniques like those used to characterise the linear functionals
on a dual space that are weak™-uniformly continuous on the unit ball of the
dual enable us to prove the



Proposition: Let H be a nontrivial Hilbert space, and let ¢ be
a linear functional on B(H) with the property SC. Then for each
e > 0 there exist a finite set {eq1,...,en} of pairwise orthogonal
unit vectors in H and elements c;i, (1 < j,k < n) of K, such that

o(T) — i Cjk <Tej,ek> <€

Jk=1
for all T € B1(H).
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